Sequence And Series Question 56

Question: $ {\log_{e}}x-{\log_{e}}(x-1)= $

Options:

A) $ \frac{1}{x}-\frac{1}{2x^{2}}+\frac{1}{3x^{3}}-…..\infty $

B) $ \frac{1}{x}+\frac{1}{2x^{2}}+\frac{1}{3x^{3}}+…..\infty $

C) $ 2,( \frac{1}{x}+\frac{1}{3x^{3}}+\frac{1}{5x^{5}}+…\infty ) $

D) $ 2,( \frac{1}{x}-\frac{1}{3x^{3}}+\frac{1}{5x^{5}}-…\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ {\log_{e}}x-{\log_{e}}(x-1) $ $ ={\log_{e}}( \frac{x}{x-1} )={\log_{e}}( \frac{1}{1-\frac{1}{x}} )=-{\log_{e}}( 1-\frac{1}{x} ) $ $ =\frac{1}{x}+\frac{1}{2x^{2}}+\frac{1}{3x^{3}}+…. $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index