Sequence And Series Question 564
Question: If $ x,,y,z $ are three consecutive positive integers, then $ \frac{1}{2}{\log_{e}}x+\frac{1}{2}{\log_{e}}z+\frac{1}{2xz+1}+\frac{1}{3}{{( \frac{1}{2xz+1} )}^{3}}+….= $
Options:
A) $ {\log_{e}}x $
B) $ {\log_{e}}y $
C) $ {\log_{e}}z $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Since  $ x,y,z $ are three consecutive positive integers,  therefore  $ 2y=x+z $ .
$ \Rightarrow 4y^{2}={{(x+z)}^{2}}\Rightarrow 4y^{2}={{(x-z)}^{2}}+4xz $
$ \Rightarrow 4y^{2}={{(-2)}^{2}}+4xz,,(\because z-x=-2) $
$ \Rightarrow y^{2}=1+xz $                     ….(i)      Now  $ \frac{1}{2}{\log_{e}}x+\frac{1}{2}{\log_{e}}z+\frac{1}{1+2xz}+\frac{1}{3}{{( \frac{1}{1+2xz} )}^{3}}+…. $   $ =\frac{1}{2}[ {\log_{e}}x+{\log_{e}}z . $  $ +2. { ( \frac{1}{1+2xz} )+\frac{1}{3}{{( \frac{1}{1+2xz} )}^{3}}+…. } ] $   $ =\frac{1}{2}[ {\log_{e}}xz+{\log_{e}}( \frac{1+\frac{1}{1+2xz}}{1-\frac{1}{1+2xz}} ) ] $   $ =\frac{1}{2}[ {\log_{e}}xz+{\log_{e}}( \frac{1+xz}{xz} ) ] $   $ =\frac{1}{2}{\log_{e}}(1+xz)=\frac{1}{2}{\log_{e}}y^{2} $  $ ={\log_{e}}y $ .
 BETA
  BETA 
             
             
           
           
           
          