Sequence And Series Question 571

Question: $ 1+\frac{{\log_{e}}x}{1,!}+\frac{{{({\log_{e}}x)}^{2}}}{2,!}+\frac{{{({\log_{e}}x)}^{3}}}{3,!}+…..\infty = $

[Kurukshetra CEE 1998; JMI CET 2000]

Options:

A) $ {\log_{e}}x $

B) $ x $

C) $ {x^{-1}} $

D) $ -{\log_{e}}(1+x) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ 1+\frac{{\log_{e}}x}{1,!}+\frac{{{({\log_{e}}x)}^{2}}}{2\ !}+\frac{{{({\log_{e}}x)}^{3}}}{3\ !}+……+\frac{{{({\log_{e}}x)}^{n}}}{n\ !}+…. $ $ ={e^{({\log_{e}}x)}}=x $ .