Sequence And Series Question 577

Question: If the $ 4^{th},\ 7^{th} $ and $ 10^{th} $ terms of a G.P. be $ a,\ b,\ c $ respectively, then the relation between $ a,\ b,\ c $ is

[MNR 1995; Karnataka CET 1999]

Options:

A) $ b=\frac{a+c}{2} $

B) $ a^{2}=bc $

C) $ b^{2}=ac $

D) $ c^{2}=ab $

Show Answer

Answer:

Correct Answer: C

Solution:

Let first term of G.P. $ =A $ and common ratio $ =r $ We know that $ n^{th} $ term of G.P. = $ A{r^{n-1}} $ Now $ t_4=a=Ar^{3},\ t_7=b=Ar^{6} $ and $ t_{10}=c=Ar^{9} $ Relation $ b^{2}=ac $ is true because $ b^{2}={{(Ar^{6})}^{2}}=A^{2}r^{12} $ and $ ac=(Ar^{3})(Ar^{9})=A^{2}r^{12} $ Aliter: As we know, if $ xy+2y^{2}+yz=xy+xz+y^{2}+yz $ in A.P., then $ =2n^{2}+5n-2n^{2}+4n-2-5n+5=4n+3 $ terms of a G.P. are always in G.P., therefore, $ a,\ b,\ c $ will be in G.P. $ i.e. $ $ 2,\ 5,\ 8,\ 11,\ 14=40 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें