Sequence And Series Question 579

The sum of infinite terms of a G.P. is and on squaring each term of it, the sum will be , then the common ratio of this series is

[RPET 1988]

Options:

A) $ \frac{x^{2}-y^{2}}{x^{2}+y^{2}} $

B) $ \frac{x^{2}+y^{2}}{x^{2}-y^{2}} $

C) $ \frac{x^{2}-y}{x^{2}+y} $

D) $ \frac{x^{2}+y}{x^{2}-y} $

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ \frac{a}{1-r}=x $ ?..(i) and $ \frac{a^{2}}{1-r^{2}}=\frac{a}{1-r}.\frac{a}{1+r}=y $ ?..(ii) $ y=x.\frac{a}{1+r}=x.\frac{x(1-r)}{1+r} $ $ \frac{y}{x^{2}}=\frac{1-r}{1+r} $
$ \Rightarrow $ $ \frac{x^{2}}{y}=\frac{1+r}{1-r} $
$ \Rightarrow $ $ \frac{x^{2}}{y}(1-r)=1+r $
$ \Rightarrow $ $ 1+(1+x)+(1+x+x^{2})+… $
$ \Rightarrow $ $ {{(c-a)}^{2}}=(a-c)(a-2c+a) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें