Sequence And Series Question 582

Question: If $ {{(p+q)}^{th}} $ term of a G.P. be $ m $ and $ {{(p-q)}^{th}} $ term be $ n $ , then the $ p^{th} $ term will be

[RPET 1997; MP PET 1985, 99]

Options:

A) $ m/n $

B) $ \sqrt{mn} $

C) $ mn $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Given that $ m=a{r^{p+q-1}} $ and $ n=a{r^{p-q-1}} $ $ {r^{p+q-1-p+q+1}}=\frac{m}{n}\Rightarrow r={{( \frac{m}{n} )}^{1/(2q)}} $ and $ a=\frac{m}{{{( \frac{m}{n} )}^{(p+q-1)/2q}}} $ Now $ p^{th} $ term $ =a{r^{p-1}}=\frac{m}{{{( \frac{m}{n} )}^{(p+q-1)/2q}}}{{( \frac{m}{n} )}^{(p-1)/2q}} $ $ =m{{( \frac{m}{n} )}^{(p-1)/2q-(p+q-1)/(2q)}}=m{{( \frac{m}{n} )}^{-1/2}}={m^{1-1/2}}{n^{1/2}} $ $ ={m^{1/2}}{n^{1/2}}=\sqrt{mn} $ . Aliter : As we know each term in a G.P. is geometric mean of the terms equidistant from it. Here $ {{(p+q)}^{th}} $ and $ {{(p-q)}^{th}} $ terms are equidistant from $ p^{th} $ term $ i.e. $ at a distance of $ q $ . Therefore, $ p^{th} $ term will be G.M. of $ {{(p+q)}^{th}} $ and $ {{(p-q)}^{th}} $ $ i.e. $ $ \sqrt{mn} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें