Sequence And Series Question 590
Question: If the sum of an infinite G.P. and the sum of square of its terms is 3, then the common ratio of the first series is
[Roorkee 1972]
Options:
A) 1
B) $ \frac{1}{2} $
C) $ \frac{2}{3} $
D) $ \frac{3}{2} $
Show Answer
Answer:
Correct Answer: B
Solution:
Let the first series be  $ a+ar+ar^{2}+……… $ then the second series is  $ a^{2}+a^{2}r^{2}+a^{2}r^{4}+………. $ their sums are given as 3. So, we have  $ \frac{a}{1-r}=3 $  or  $ a=3(1-r) $  and   $ \frac{q}{2}=\frac{pr}{p+r}=K $  or  $ a^{2}=3(1-r^{2}) $  Eliminating  $ a,\ {{{ 3,(1-r) }}^{2}}=3,(1-r^{2}) $
$ \Rightarrow  $  $ 3,(1-r)=(1+r) $ ,  $ { \because \ r\ne 1 } $
$ \Rightarrow  $  $ 4r=2 $  or  $ r=\frac{1}{2} $ .
 BETA
  BETA 
             
             
           
           
           
          