Sequence And Series Question 590

Question: If the sum of an infinite G.P. and the sum of square of its terms is 3, then the common ratio of the first series is

[Roorkee 1972]

Options:

A) 1

B) $ \frac{1}{2} $

C) $ \frac{2}{3} $

D) $ \frac{3}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let the first series be $ a+ar+ar^{2}+……… $ then the second series is $ a^{2}+a^{2}r^{2}+a^{2}r^{4}+………. $ their sums are given as 3. So, we have $ \frac{a}{1-r}=3 $ or $ a=3(1-r) $ and $ \frac{q}{2}=\frac{pr}{p+r}=K $ or $ a^{2}=3(1-r^{2}) $ Eliminating $ a,\ {{{ 3,(1-r) }}^{2}}=3,(1-r^{2}) $
$ \Rightarrow $ $ 3,(1-r)=(1+r) $ , $ { \because \ r\ne 1 } $
$ \Rightarrow $ $ 4r=2 $ or $ r=\frac{1}{2} $ .