Sequence And Series Question 599

Question: If $ {\log_{x}}a,\ {a^{x/2}} $ and $ {\log_{b}}x $ are in G.P., then $ x= $

Options:

A) $ -\log ({\log_{b}}a) $

B) $ -{\log_{a}}({\log_{a}}b) $

C) $ {\log_{a}}({\log_{e}}a)-{\log_{a}}({\log_{e}}b) $

D) $ {\log_{a}}({\log_{e}}b)-{\log_{a}}({\log_{e}}a) $

Show Answer

Answer:

Correct Answer: C

Solution:

Obviously $ {{({a^{x/2}})}^{2}}={\log_{x}}a\ .\ {\log_{b}}x={\log_{b}}a $
$ \Rightarrow $ $ a^{x}={\log_{b}}a $
$ \Rightarrow $ $ x={\log_{a}}({\log_{b}}a) $
$ \Rightarrow $ $ x={\log_{a}}( \frac{{\log_{e}}a}{{\log_{e}}b} )={\log_{a}}({\log_{e}}a)-{\log_{a}}({\log_{e}}b) $ .