Sequence And Series Question 60

Question: Let $ S_1,\ S_2,……. $ be squares such that for each $ n\ge 1 $ , the length of a side of $ S_{n} $ equals the length of a diagonal of $ {S_{n+1}} $ . If the length of a side of $ S_1 $ is $ 10cm $ , then for which of the following values of $ n $ is the area of $ S_{n} $ less then $ 1\ sq\ cm $

[IIT 1999]

Options:

A) 7

B) 8

C) 9

D) 10

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ x_{n}={x_{n+1}}\sqrt{2} $
$ \therefore $ $ x_1=x_2\sqrt{2},\ x_2=x_3\sqrt{2},\ x_{n}={x_{n+1}}\sqrt{2} $ On multiplying $ x_1={x_{n+1}}{{(\sqrt{2})}^{n}} $
$ \Rightarrow $ $ {x_{n+1}}=\frac{x_1}{{{(\sqrt{2})}^{n}}} $ Hence $ x_{n}=\frac{x_1}{{{(\sqrt{2})}^{n-1}}} $ Area of $ S_{n}=x_n^{2}=\frac{x_1^{2}}{{2^{n-1}}}<1 $
$ \Rightarrow $ $ {2^{n-1}}>x_1^{2}\ \ \ \ \ \ (x_1=10) $
$ \therefore $ $ {2^{n-1}}>100 $ But $ 2^{7}>100,\ 2^{8}>100,\ $ etc.
$ \therefore $ $ n-1=7,\ 8,\ 9….. $
$ \Rightarrow $ $ n=8,\ 9,\ 10….. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें