Sequence And Series Question 602
Question: If the $ 10^{th} $ term of a geometric progression is 9 and $ 4^{th} $ term is 4, then its $ 7^{th} $ term is
[MP PET 1996]
Options:
A) 6
B) 36
C) $ \frac{4}{9} $
D) $ \frac{9}{4} $
Show Answer
Answer:
Correct Answer: A
Solution:
Accordingly,  $ ar^{9}=9 $  and  $ ar^{3}=4 $
$ \Rightarrow  $  $ r^{3}=\frac{3}{2} $  and  $ a=\frac{8}{3} $ .
$ \therefore  $  $ 7^{th} $  term  $ i.e. $  $ ar^{6}=\frac{8}{3}{{( \frac{3}{2} )}^{2}}=6 $ . Trick:  $ 7^{th} $  term is equidistant from  $ 10^{th} $ and  $ 4^{th} $  so it will be $ \sqrt{9\times 4}=6 $ .
 BETA
  BETA 
             
             
           
           
           
          