Sequence And Series Question 602

Question: If the $ 10^{th} $ term of a geometric progression is 9 and $ 4^{th} $ term is 4, then its $ 7^{th} $ term is

[MP PET 1996]

Options:

A) 6

B) 36

C) $ \frac{4}{9} $

D) $ \frac{9}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

Accordingly, $ ar^{9}=9 $ and $ ar^{3}=4 $
$ \Rightarrow $ $ r^{3}=\frac{3}{2} $ and $ a=\frac{8}{3} $ .
$ \therefore $ $ 7^{th} $ term $ i.e. $ $ ar^{6}=\frac{8}{3}{{( \frac{3}{2} )}^{2}}=6 $ . Trick: $ 7^{th} $ term is equidistant from $ 10^{th} $ and $ 4^{th} $ so it will be $ \sqrt{9\times 4}=6 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें