Sequence And Series Question 608

Question: The sum of the first $ n $ terms of the series $ \frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+……… $ is

[IIT 1988; MP PET 1996; RPET 1996, 2000; Pb. CET 1994; DCE 1995, 96]

Options:

A) $ 2^{n}-n-1 $

B) $ 1-{2^{-n}} $

C) $ n+{2^{-n}}-1 $

D) $ 2^{n}-1 $

Show Answer

Answer:

Correct Answer: C

Solution:

The sum of the first $ n $ terms is $ S_{n}=( 1-\frac{1}{2} )+( 1-\frac{1}{2^{2}} )+( 1-\frac{1}{2^{3}} )+( 1-\frac{1}{2^{4}} ) $ $ +……+( 1-\frac{1}{2^{n}} ) $ $ =n-{ \frac{1}{2}+\frac{1}{2^{2}}+…..+\frac{1}{2^{n}} } $ = $ n-\frac{1}{2}( \frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}} )=n-( 1-\frac{1}{2^{n}} )=n-1+{2^{-n}} $ . Trick: Check for $ n=1,\ 2\ i.e. $ $ S_1=\frac{1}{2},\ S_2=\frac{5}{4} $ and (c)
$ \Rightarrow S_1=\frac{1}{2} $ and $ S_2=2+{2^{-2}}-1=\frac{5}{4} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें