Sequence And Series Question 62

Question: The sum of $ \frac{1}{2}+\frac{1}{3}.\frac{1}{2^{3}}+\frac{1}{5}.\frac{1}{2^{5}}+…..\infty $ is

[MP PET 1991]

Options:

A) $ {\log_{e}}\sqrt{\frac{3}{2}} $

B) $ {\log_{e}}\sqrt{3} $

C) $ {\log_{e}}\sqrt{\frac{1}{2}} $

D) $ {\log_{e}}3 $

Show Answer

Answer:

Correct Answer: B

Solution:

Sum of $ \frac{1}{2}+\frac{1}{3}.\frac{1}{{2^{.3}}}+\frac{1}{5}.\frac{1}{2^{5}}+….\infty $ = $ \frac{1}{2}[ 1+\frac{1}{3}.\frac{1}{2^{2}}+\frac{1}{5}.\frac{1}{2^{4}}+….\infty ] $ $ =\frac{1}{2}.{\log_{e}}( \frac{1+\frac{1}{2}}{1-\frac{1}{2}} ) $ = $ \frac{1}{2}.{\log_{e}}( \frac{3/2}{1/2} )=\frac{1}{2}.{\log_{e}}(3)={\log_{e}}\sqrt{3} $ .