Sequence And Series Question 63
Question: . If $ {\log_3}2,\ {\log_3}(2^{x}-5) $ and $ {\log_3}( 2^{x}-\frac{7}{2} ) $ are in A.P., then $ x $ is equal to
[IIT 1990]
Options:
A) $ 1,\ \frac{1}{2} $
B) $ 1,\ \frac{1}{3} $
C) $ 1,\ \frac{3}{2} $
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
$ {\log_3}2,\ {\log_3}(2^{x}-5) $  and  $ {\log_3}( 2^{x}-\frac{7}{2} ) $  are in A.P.
$ \Rightarrow  $  $ 2{\log_3}(2^{x}-5)={\log_3}[ (2),( 2^{x}-\frac{7}{2} ) ] $
$ \Rightarrow  $   $ {{(2^{x}-5)}^{2}}={2^{x+1}}-7 $
$ \Rightarrow  $  $ 2^{2x}-12\ .\ 2^{x}-32=0 $
$ \Rightarrow  $   $ x=2,\ 3 $  But  $ x=2 $  does not hold, hence $ x=3 $ .
 BETA
  BETA 
             
             
           
           
           
          