Sequence And Series Question 63

Question: . If $ {\log_3}2,\ {\log_3}(2^{x}-5) $ and $ {\log_3}( 2^{x}-\frac{7}{2} ) $ are in A.P., then $ x $ is equal to

[IIT 1990]

Options:

A) $ 1,\ \frac{1}{2} $

B) $ 1,\ \frac{1}{3} $

C) $ 1,\ \frac{3}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ {\log_3}2,\ {\log_3}(2^{x}-5) $ and $ {\log_3}( 2^{x}-\frac{7}{2} ) $ are in A.P.
$ \Rightarrow $ $ 2{\log_3}(2^{x}-5)={\log_3}[ (2),( 2^{x}-\frac{7}{2} ) ] $
$ \Rightarrow $ $ {{(2^{x}-5)}^{2}}={2^{x+1}}-7 $
$ \Rightarrow $ $ 2^{2x}-12\ .\ 2^{x}-32=0 $
$ \Rightarrow $ $ x=2,\ 3 $ But $ x=2 $ does not hold, hence $ x=3 $ .