Sequence And Series Question 633

Question: If $ a^{2}+ab^{2}+16c^{2}=2(3ab+6bc+4ac) $ , where $ a,b,c $ are non-zero numbers. Then $ a,b,c $ are in

[AMU 2005]

Options:

A) A.P

B) G.P

C) H.P

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ (a+2b+2c) $ $ (a-2b+2c)=a^{2}+4c^{2} $
Þ $ {{(a+2c)}^{2}}-{{(2b)}^{2}}=a^{2}+4c^{2} $
Þ $ a^{2}+4ac+4c^{2}-4b^{2}=a^{2}+4c^{2} $
Þ $ 4ac-4b^{2}=0 $ Þ $ b^{2}=ac $ Hence a, b, c are in G.P.