Sequence And Series Question 638

Question: If the $ m^{th} $ term of a H.P. be $ n $ and $ n^{th} $ be $ m $ , then the $ r^{th} $ term will be

Options:

A) $ \frac{r}{mn} $

B) $ \frac{mn}{r+1} $

C) $ \frac{mn}{r} $

D) $ \frac{mn}{r-1} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ T_{m}=n,\ T_{n}=m $ for H.P. Therefore for the corresponding A.P. $ m^{th} $ term $ =\frac{1}{n},\ n^{th} $ term $ =\frac{1}{m} $ Let $ a $ and d be the first term and common difference of this A.P., then $ a+(m-1)d=\frac{1}{n} $ ?..(i) $ a+(n-1)d=\frac{1}{m} $ ?..(ii) Solving these, we get $ a=\frac{1}{mn},\ d=\frac{1}{mn} $ Now, $ r^{th} $ term of corresponding A.P. $ =a+(r-1)d=\frac{1}{mn}+(r-1)\frac{1}{mn}=\frac{1+r-1}{mn}=\frac{r}{mn} $ Therefore $ r^{th} $ term of corresponding H.P. is $ \frac{mn}{r} $ . Note: Students should remember this question as a fact.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें