Sequence And Series Question 643

Question: If $ 5^{th} $ term of a H.P. is $ \frac{1}{45} $ and $ 11^{th} $ term is $ \frac{1}{69} $ , then its $ 16^{th} $ term will be

[RPET 1987, 97]

Options:

A) 1/89

B) 1/85

C) 1/80

D) 1/79

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ 5^{th} $ term of the corresponding A.P. $ =a+4d=45 $ ?..(i) and $ 11^{th} $ term of the corresponding A.P. $ =a+10d=69 $ ?..(ii) From (i) and (ii), we get $ a=29,\ d=4 $ Therefore $ 16^{th} $ term of the corresponding A.P. = $ a+15d=29+15\times 4=89 $ . Hence $ 16^{th} $ term of the H.P. is $ \frac{1}{89} $ .