Sequence And Series Question 643
Question: If $ 5^{th} $ term of a H.P. is $ \frac{1}{45} $ and $ 11^{th} $ term is $ \frac{1}{69} $ , then its $ 16^{th} $ term will be
[RPET 1987, 97]
Options:
A) 1/89
B) 1/85
C) 1/80
D) 1/79
Show Answer
Answer:
Correct Answer: A
Solution:
Here $ 5^{th} $ term of the corresponding A.P. $ =a+4d=45 $ ?..(i) and $ 11^{th} $ term of the corresponding A.P. $ =a+10d=69 $ ?..(ii) From (i) and (ii), we get $ a=29,\ d=4 $ Therefore $ 16^{th} $ term of the corresponding A.P. = $ a+15d=29+15\times 4=89 $ . Hence $ 16^{th} $ term of the H.P. is $ \frac{1}{89} $ .