Sequence-And-Series Question 648

Question: The expression $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}} $ is $ [a\ne b\ne 0] $ is (where a and b are unequal non-zero numbers)

Options:

A) A.M. between a and b if $ n=-1 $

B) G.M. between a and b if $ n=-\frac{1}{2} $

C) H.M. between a and b if n = 0

D) All are correct

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}}=\frac{a+b}{2} $

$ \Rightarrow ,2{a^{n+1}}+2{b^{n+1}}={a^{n+1}}+{b^{n+1}}+ab^{n}+ba^{n} $

$ \Rightarrow (a-b)(a^{n}-b^{n})=0 $

$ \Rightarrow a^{n}=b^{n} $ it is possible for unequal numbers a and b if $ n=0 $ Let $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}}=\sqrt{ab} $

$ \Rightarrow {a^{n+1}}+{b^{n+1}}={a^{n+\frac{1}{2}}},{b^{\frac{1}{2}}}+{a^{\frac{1}{2}}},{b^{n+\frac{1}{2}}} $

$ \Rightarrow ,( {a^{n+\frac{1}{2}}}-{b^{n+\frac{1}{2}}} ),( \sqrt{a}-\sqrt{b} )=0 $

$ \Rightarrow {a^{n+\frac{1}{2}}}-{b^{n+\frac{1}{2}}}=0, $ which holds true if $ n+\frac{1}{2}=0\Rightarrow n=-\frac{1}{2} $ Let $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}}=\frac{2ab}{a+b} $

$ \Rightarrow ,{a^{n+2}}+{a^{n+1}}b+a{b^{n+1}}+b_{=2a}^{n+2},{{,}^{n+1}}b+2a{b^{n+1}} $

$ \Rightarrow ,(a-b)({a^{n+1}}-{b^{n+1}})=0 $

$ \Rightarrow ,{a^{n+1}}-{b^{n+1}}=0\Rightarrow n=-1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें