Sequence-And-Series Question 652

Question: Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then $ P^{2}R^{3}:S^{3} $ is equal to

Options:

A) 1 : 1

B) Common ratio: 1

C) $ {{( \text{first term} )}^{2}}\text{: }{{( \text{common ratio} )}^{2}} $

D) $ {{( commonratio )}^{n}}:1 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] If the three terms of the GP. be $ \frac{a}{r}, $ a and or then $ S=\frac{a}{r}+a+ar=\frac{a}{r}(1+r+r^{2}) $ $ P=a^{3} $ and $ R=\frac{r}{a}+\frac{1}{a}+\frac{1}{ar}=\frac{1}{ar}(r^{2}+r+1) $ Now, $ \frac{P^{2}R^{3}}{S^{3}}=\frac{a^{6}\frac{1}{a^{3}r^{3}}{{(r^{2}+r+1)}^{3}}}{\frac{a^{3}}{r^{3}}{{(r^{2}+r+1)}^{3}}} $ So, the required ratio is $ 1:1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें