Sequence-And-Series Question 656

Question: If the angles A< B<C of a triangle are in A.P., then

Options:

A) $ c^{2}=a^{2}+b^{2}-ab $

B) $ b^{2}=a^{2}+c^{2}-ac $

C) $ c^{2}=a^{2}+b^{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ A+C=2B $ and $ A+B+C=180{}^\circ $ so, $ B=60{}^\circ $
$ \therefore ,\cos ,60{}^\circ =\frac{a^{2}+c^{2}-b^{2}}{2ac}\Rightarrow b^{2}=a^{2}+c^{2}-ac $