Sequence-And-Series Question 656
Question: If the angles A< B<C of a triangle are in A.P., then
Options:
A) $ c^{2}=a^{2}+b^{2}-ab $
B) $ b^{2}=a^{2}+c^{2}-ac $
C) $ c^{2}=a^{2}+b^{2} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
[b]  $ A+C=2B $  and  $ A+B+C=180{}^\circ  $  so,  $ B=60{}^\circ  $
$ \therefore ,\cos ,60{}^\circ =\frac{a^{2}+c^{2}-b^{2}}{2ac}\Rightarrow b^{2}=a^{2}+c^{2}-ac $
 BETA
  BETA 
             
             
           
           
           
          