Sequence-And-Series Question 660

Question: The equation $ ( a^{2}+b^{2} )x^{2}-2b( a+c )x+ $ $ ( b^{2}+c^{2} )=0 $ has equal roots. Which one of the following is correct about a, b, and c?

Options:

A) They are in AP

B) They are in GP

C) They are in HP

D) They are neither in AP, nor in GP, nor in HP

Show Answer

Answer:

Correct Answer: B

Solution:

[b] The given equation $ (a^{2}+b^{2})x^{2}-2b(a+c)x+(b^{2}+c^{2})=0 $ has equal roots, so, discriminant = 0 Hence, $ {2b{{(a+c)}^{2}}-4(a^{2}+b^{2})(b^{2}+c^{2})=0 $
$ \Rightarrow ,4b^{2}(a^{2}+c^{2}+2ca)-4(a^{2}b^{2}+a^{2}c^{2}+b^{4}+b^{2}c^{2})=0 $
$ \Rightarrow b^{2}a^{2}+b^{2}c^{2}+2b^{2}ca-a^{2}b^{2}-a^{2}c^{2} $ $ -b^{4}-b^{2}c^{2}=0 $
$ \Rightarrow 2b^{2}ca=b^{4}+a^{2}c^{2} $
$ \Rightarrow b4-2b^{2}ca+a^{2}c^{2}=0 $
$ \Rightarrow {{(b^{2}-ac)}^{2}}=0 $
$ \Rightarrow b^{2}=ac $
$ \Rightarrow $ a, b, c are in GP.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें