Sequence And Series Question 67

Question: $ {\log_{e}}2+{\log_{e}}( 1+\frac{1}{2} )+{\log_{e}}( 1+\frac{1}{3} )+….+{\log_{e}}( 1+\frac{1}{n-1} ) $ is equal to

Options:

A) $ {\log_{e}}1 $

B) $ {\log_{e}}n $

C) $ {\log_{e}}(1+n) $

D) $ {\log_{e}}(1-n) $

Show Answer

Answer:

Correct Answer: B

Solution:

The given series reduces to $ {\log_{e}}2+{\log_{e}}( \frac{3}{2} )+{\log_{e}}( \frac{4}{3} )+….+{\log_{e}}( \frac{n}{n-1} ) $ $ ={\log_{e}}2+{\log_{e}}3-{\log_{e}}2+{\log_{e}}4-{\log_{e}}3+.. $ …. $ +{\log_{e}}(n)-{\log_{e}}(n-1) $ $ ={\log_{e}}n $ .