Sequence-And-Series Question 671

Question: The harmonic mean H of two numbers is 4 and the arithmetic mean A and geometric mean G satisfy the equation $ 2A+G^{2}=27 $ . The two numbers are

Options:

A) 6, 3

B) 9, 5

C) 12, 7

D) 3, 2

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let two numbers be a and b. Given $ \frac{2ab}{a+b}=4\Rightarrow ab=2( a+b ) $ $ 2A+G^{2}=27 $
$ \Rightarrow 2( \frac{a+b}{2} )+ab=27 $
$ \Rightarrow ab=18 $ and $ a+b=9\Rightarrow a+b=9 $ On solving these we get $ a=3 $ & $ b=6 $ or $ a=6 $ & $ b=3. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें