Sequence And Series Question 69

Question: The sum to infinity of the given series $ \frac{1}{n}-\frac{1}{2n^{2}}+\frac{1}{3n^{3}}-\frac{1}{4n^{4}}+…. $ is

[MP PET 1994]

Options:

A) $ {\log_{e}}( \frac{n+1}{n} ) $

B) $ {\log_{e}}( \frac{n}{n+1} ) $

C) $ {\log_{e}}( \frac{n-1}{n} ) $

D) $ {\log_{e}}( \frac{n}{n-1} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{1}{n}-\frac{1}{2n^{2}}+\frac{1}{3n^{3}}-\frac{1}{4n^{4}}+…. $ $ =\frac{1}{n}-\frac{{{(1/n)}^{2}}}{2}+\frac{{{(1/n)}^{3}}}{3}-\frac{{{(1/n)}^{4}}}{4}+…. $ $ ={\log_{e}}( 1+\frac{1}{n} )={\log_{e}}( \frac{n+1}{n} ) $ .