Sequence And Series Question 7

Question: If the $ 7^{th} $ term of a harmonic progression is 8 and the $ 8^{th} $ term is 7, then its $ 15^{th} $ term is

[MP PET 1996]

Options:

A) 16

B) 14

C) $ \frac{27}{14} $

D) $ \frac{56}{15} $

Show Answer

Answer:

Correct Answer: D

Solution:

Obviously, $ 7^{th} $ term of corresponding A.P. is $ \frac{1}{8} $ and $ 8^{th} $ term will be $ \frac{1}{7} $ . $ a+6d=\frac{1}{8} $ and $ a+7d=\frac{1}{7} $ Solving these, we get $ d=\frac{1}{56} $ and $ a=\frac{1}{56} $ Therefore $ 15^{th} $ term of this A.P. $ =\frac{1}{56}+14\times \frac{1}{56}=\frac{15}{56} $ Hence the required $ 15^{th} $ term of the H.P. is $ \frac{56}{15} $ .