Sequence And Series Question 80

Question: In $ n=(1999),! $ then $ \sum\limits_{x=1}^{1999}{{\log_{n}}x} $ is equal to

[AMU 2002]

Options:

A) 1

B) 0

C) $ \sqrt[1999]{1999} $

D) - 1

Show Answer

Answer:

Correct Answer: A

Solution:

$ \sum\limits_{x=1}^{1999}{{\log_{n}}x} $ $ ={\log_{(1999)!}}1+{\log_{(1999)!}}2+…….+{\log_{(1999)!}}1999 $ $ ={\log_{(1999)!}}(1.2.3…….1999)={\log_{(1999)!}}(1999)!=1 $ .