Sequence And Series Question 84

Question: Consider the ten numbers $ ar,ar^{2},ar^{3},…ar^{10} $ .If their sum is 18 and the sum the reciprocals is 6, then the product of these ten numbers is

Options:

A) 81

B) 243

C) 343

D) 324

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given $ \frac{ar(r^{10}-1)}{r-1}=18 $ …(1) Also $ \frac{\frac{1}{ar}( 1-\frac{1}{r^{10}} )}{1-\frac{1}{r}}=6 $ Or $ \frac{1}{ar^{11}}.\frac{(r^{10}-1)r}{r-1}=6 $ Or $ \frac{1}{a^{2}r^{11}}.\frac{ar(r^{10}-1)}{r-1}=6 $ …(2) From (1) and (2) $ \frac{1}{a^{2}r^{11}}.\times 18=6 $ Or $ a^{2}r^{11}=3 $ Now $ P=a^{10}r^{11}={{(a^{2}r^{11})}^{5}}=3^{5}=243 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index