Sequence And Series Question 85

Question: If the sum of n terms of an A.P. is cn (n - 1), where $ c\ne 0 $ then the sum of the squares of these term is

Options:

A) $ c^{n}n{{(n+1)}^{2}} $

B) $ \frac{2}{3}c^{2}n(n-1)(2n-1) $

C) $ \frac{2c^{2}}{3}n(n+1)(2n+1) $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] If $ t_{r} $ be the rth term of the A.P., then $ t_{r}=S_{r}-{S_{r-1}} $ $ =cr(r-1)-c(r-1)(r-2) $ $ =c(r-1)(r-r+2)=2c(r-1) $ We have, $ t_1^{2}+t_2^{2}+…+t_n^{2}=4c^{2}(0^{2}+1^{2}+2^{2}…+{{(n-1)}^{2}}) $ $ =4c^{2}\frac{(n-1)n(2n-1)}{6} $ $ =\frac{2}{3}c^{2}n(n-1)(2n-1) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें