Sequence And Series Question 86

Question: If $ a_1,\ a_2,,a_3,……a_{24} $ are in arithmetic progression and $ a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225 $ , then $ a_1+a_2+a_3+……..+a_{23}+a_{24}= $

[MP PET 1999; AMU 1997]

Options:

A) 909

B) 75

C) 750

D) 900

Show Answer

Answer:

Correct Answer: D

Solution:

$ a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225 $
$ \Rightarrow $ $ (a_1+a_{24})+(a_5+a_{20})+(a_{10}+a_{15})=225 $
$ \Rightarrow $ $ 3(a_1+a_{24})=225 $
$ \Rightarrow $ $ a_1+a_{24}=75 $ ( $ \because $ In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term) $ a_1+a_2+……+a_{24}=\frac{24}{2}(a_1+a_{24})=12\times 75=900 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें