Sequence And Series Question 86

Question: If $ a_1,\ a_2,,a_3,……a_{24} $ are in arithmetic progression and $ a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225 $ , then $ a_1+a_2+a_3+……..+a_{23}+a_{24}= $

[MP PET 1999; AMU 1997]

Options:

A) 909

B) 75

C) 750

D) 900

Show Answer

Answer:

Correct Answer: D

Solution:

$ a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225 $
$ \Rightarrow $ $ (a_1+a_{24})+(a_5+a_{20})+(a_{10}+a_{15})=225 $
$ \Rightarrow $ $ 3(a_1+a_{24})=225 $
$ \Rightarrow $ $ a_1+a_{24}=75 $ ( $ \because $ In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term) $ a_1+a_2+……+a_{24}=\frac{24}{2}(a_1+a_{24})=12\times 75=900 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index