Sequence And Series Question 97

Question: if a, b, c are in A.P., then $ \frac{a}{bc},\frac{1}{c},\frac{2}{b} $ will be in

Options:

A) A.P.

B) G.P.

C) H.P.

D) none of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] a, b, and c are in A.P. Hence, $ 2b=a+c $ …(1) $ \frac{a}{bc}+\frac{2}{b}=\frac{a+2c}{bc}\ne \frac{2}{c} $
$ \Rightarrow \frac{a}{bc},\frac{1}{c},\frac{2}{b} $ are not in A.P. $ \frac{bc}{a}+\frac{b}{2}=\frac{2bc+ab}{2a}\ne c $ Hence, the given numbers are not in H.P. Again, $ \frac{a}{bc}\frac{2}{b}=\frac{2a}{b^{2}c}\ne \frac{1}{c^{2}} $ Therefore, the given numbers are not in G.P.