Sets Relations And Functions Question 103

Let $ A={x|x\le 9,x\in \mathbb{N}} $ . Let $ B={a,b,c} $ be the subset of A where $ ( a+b+c ) $ is a multiple of 3. What is the largest possible number of subsets like B?

Options:

A) 12

B) 21

C) 27

D) 30

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ A={x:x\le 9,x\in N}={1,2,3,4,5,6,7,8,9} $ Total possible multiple of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27 But 3 and 27 are not possible because 3 and 27 cannot be expressed as such that $ a+b+c $ is a multiple of 3 $ 6\to 1+2+3 $
$ 9\to 2+3+4,5+3+1,6+2+1 $
$ 12\to 9+2+1,8+3+1,7+1+4,7+2+3 $
$ 6+4+2,6+5+1,5+4+3 $
$ 15\to 9+4+2,9+5+1,8+6+1,8+5+2, $
$ 8+4+3,7+6+2,7+5+3,6+5+4 $
$ 18\to 9+8+1,9+7+2,9+6+3, $
$ 9+5+4,8+7+3,8+6+4,7+6+5 $
$ 21\to 9+8+4,9+7+5,8+7+6 $
$ 24\to 9+8+7 $
Hence, the total number of largest possible subsets is 30.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें