Sets-Relations-And-Functions Question 123

Question: Let R be a set of all distinct numbers of the form $\frac{m}{n}$, where $m, n \in \{1,2,3,4,5\}$. What is the cardinality of the set R?

Options:

A) 15

B) 18

C) 21

D) 25

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c]

First, we need to list all possible fractions $\frac{m}{n}$ where $m, n \in \{1,2,3,4,5\}$:

$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$

$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}$

$\frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{3}{5}$

$\frac{4}{1}, \frac{4}{2}, \frac{4}{3}, \frac{4}{4}, \frac{4}{5}$

$\frac{5}{1}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{5}{5}$

The total number of these fractions is $5 \times 5 = 25$. However, the question asks for distinct numbers, so we need to simplify these fractions and count only the unique ones.

After simplification:

$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$

$2, 1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5}$

$3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}$

$4, 2, \frac{4}{3}, 1, \frac{4}{5}$

$5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, 1$

Counting the unique numbers:

$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, 2, \frac{2}{3}, \frac{2}{5}, 3, \frac{3}{2}, \frac{3}{4}, \frac{3}{5}, 4, \frac{4}{3}, \frac{4}{5}, 5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}$

Therefore, the cardinality of set R is 21.