Sets-Relations-And-Functions Question 124

Question: Let A, B, C be finite sets. Suppose that $ n(A)=10, $ $ n(B)=15, $ $ n(C)=20, $ $ n(A\cap B)=8 $ and $ n(B\cap C)=9. $ Then the possible value of $ n(A\cup B\cup C) $ is

Options:

A) 26

B) 27

C) 28

D) Any of the three values 26, 27, 28 is possible

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d]We have $ n(A\cup B\cup C)=n(A)+n(B)+n(C)- $
    $ n(A\cap B)-n(B\cap C)-n(C\cap A)+n(A\cap B\cap C) $
    $ =10+15+20-8-9-n(C\cap A)+n(A\cap B\cap C) $
    $ =28-{n(C\cap A)-n(A\cap B\cap C)} $ (i) Since $ n(C\cap A)\ge n(A\cap B\cap C) $
    We have $ n(C\cap A)\ge n(A\cap B\cap C)\ge 0 $ (ii) From (i) and (ii): $ n(A\cup B\cup C)\le 28 $ (iii) Now, $ n(A\cup B)=n(A)+n(B)-n(A\cap B)=10+15-8=17 $ and $ n(B\cup C)=n(B)+n(C)-n(B\cap C)=15+20-9=26 $ since, $ n(A\cup B\cup C)\ge n(A\cup C) $ and $ n(A\cup B\cup C)\ge n(B\cup C) $ we have $ n(A\cup B\cup C)\ge 17 $ and $ n(A\cup B\cup C)\ge 26 $
    Hence $ n(A\cup B\cup C)\ge 26 $ (iv) From (iii) and (iv) we obtain $ 26\le n(A\cup B\cup C)\le 28 $
    Also $ n(A\cup B\cup C) $ is a positive integer
    $ \therefore ,n(A\cup B\cup C)=26or27or28 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें