Sets-Relations-And-Functions Question 145

Question: Let $A=\{x \mid x \leq 9, x \in N\}$. Let $B=\{a, b, c\}$ be the subset of A where $(a+b+c)$ is a multiple of 3 . What is the largest possible number of subsets like B?

Options:

A) 12

B) 21

C) 27

D) 30

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Given $ A=\{x:x\le 9,x\in N\}=\{1,2,3,4,5,6,7,8,9\} $

Total possible multiple of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27 But 3 and 27 are not possible because 3 and 27 cannot be express as such that

$ a+b+c $

multiple of 3

$ 6\to 1+2+3 $

$ 9\to 2+3+4,5+3+1,6+2+1 $

$ 12\to 9+2+1,8+3+1,7+1+4,7+2+3 $

$ 6+4+2,6+5+1,5+4+3 $

$ 15\to 9+4+2,9+5+1,8+6+1,8+5+2, $

$ 8+4+3,7+6+2,7+5+3,6+5+4 $

$ 18\to 9+8+1,9+7+2,9+6+3, $

$ 9+5+4,8+7+3,8+6+4,7+6+5 $

$ 21\to 9+8+4,9+7+5,8+7+6 $

$ 24\to 9+8+7 $
Hence, total largest possible subsets are 30.