Sets Relations And Functions Question 26

Question: The range of the function $f$ defined by $f(x)=\left[\frac{1}{\sin \{x\}}\right]$ (where [.] and $\{\}$ , respectively, denote the$ greatest integer and the fractional part functions) is

Options:

A) I, the set of integers

B) N, the set of natural numbers

C) W, the set of whole numbers

D) None of the above

Show Answer

Answer:

Correct Answer: B

Solution:

  • [d] Since $ {x}\in [0,1),sin{x}\in (0,sin1) $ as $ f(x) $ is defined if $ \sin {x}\ne 0, $
    i.e., $ \frac{1}{\sin {x}}\in ( \frac{1}{\sin 1},\infty ) $

Or $ [ \frac{1}{\sin {x}} ]\in {1,2,3…} $

Note that $ 1<\frac{\pi }{3} $ or $ \sin 1<\sin \frac{\pi }{3}=0.866 $ or $ \frac{1}{\sin 1}>1.155. $