Sets Relations And Functions Question 40
Question: Which pair of functions is identical?
Options:
A) $\sin ^{-1}(\sin x)$ and $\sin (\sin ^{-1} x)$
B) $ {\log_{e}}e^{x},{e^{{\log_{e}}x}} $
C) $ {\log_{e}}x^{2},2log_{e}x $
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] Here,
(1)    $ {{\sin }^{-1}}(\sin x) $     is defined for    $ x\in [ -\frac{\pi }{2},\frac{\pi }{2} ] $    , while    $ \sin (si{n^{-1}}x) $     is defined only for    $ x\in [-1,1] $ 
 (2) $ {\log_{e}}e^{x}, $ is defined for all x, while $ {e^{{\log_{e}}x}} $ is defined for $ x>0. $
 (3) $ {\log_{e}}x^{2} $ is defined for all $ x\in R-{0} $ , while $ 2{\log_{e}}x $ is defined for $ x>0. $
 Thus, none is identical.
 BETA
  BETA 
             
             
           
           
           
          