Sets Relations And Functions Question 40

Question: Which pair of functions is identical?

Options:

A) $\sin ^{-1}(\sin x)$ and $\sin (\sin ^{-1} x)$

B) $ {\log_{e}}e^{x},{e^{{\log_{e}}x}} $

C) $ {\log_{e}}x^{2},2log_{e}x $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Here, (1) $ {{\sin }^{-1}}(\sin x) $ is defined for $ x\in [ -\frac{\pi }{2},\frac{\pi }{2} ] $ , while $ \sin (si{n^{-1}}x) $ is defined only for $ x\in [-1,1] $
    (2) $ {\log_{e}}e^{x}, $ is defined for all x, while $ {e^{{\log_{e}}x}} $ is defined for $ x>0. $
    (3) $ {\log_{e}}x^{2} $ is defined for all $ x\in R-{0} $ , while $ 2{\log_{e}}x $ is defined for $ x>0. $
    Thus, none is identical.