Sets Relations And Functions Question 43

Question: Let $ f:[ -\frac{\pi }{3},\frac{2\pi }{3} ]\to [0,4] $ be a function defined as $ f(x)=\sqrt{3}\sin x-\cos x+2 $ .Then $ {f^{-1}}(x) $ is given by

Options:

A) $ {{\sin }^{-1}}( \frac{x-2}{2} )-\frac{\pi }{6} $

B) $ {{\sin }^{-1}}( \frac{x-2}{2} )+\frac{\pi }{6} $

C) $ \frac{2\pi }{3}+{{\cos }^{-1}}( \frac{x-2}{2} ) $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ y=f(x)=\sqrt{3}\sin x-\cos x+2 $ $ =2\sin ( x-\frac{\pi }{6} )+2 $ …(1) Since $ f(x) $ is one-one and onto, f is invertible. From (1), $ \sin ( x-\frac{\pi }{6} )=\frac{y-2}{2} $
    Or $ x={{\sin }^{-1}}\frac{y-2}{2}+\frac{\pi }{6} $
    Or $ {f^{-1}}(x)=si{n^{-1}}( \frac{x-2}{2} )+\frac{\pi }{6} $