Sets Relations And Functions Question 53
Question: Let R be the relation on the set R of all real numbers defined by a R b iff $ |a-b|\le 1 $ . Then R is
[Roorkee 1998]
Options:
A) Reflexive and Symmetric
B) Symmetric only
C) Transitive only
D) Anti-symmetric only
Show Answer
Answer:
Correct Answer: A
Solution:
- 
$ |a-a|=0<1 $
$ \therefore ,a,R,a,\forall ,a\in R $     
$ \therefore  $     R is reflexive.  Again a R b
Þ    $ |a-b|\le 1\Rightarrow |b-a|\le 1\Rightarrow bRa $     
$ \therefore  $     R is symmetric, Again    $ 1R\frac{1}{2} $     and    $ \frac{1}{2}R1 $     but    $ \frac{1}{2}\ne 1 $     
$ \therefore  $     R is not anti-symmetric. Further, 1 R 2 and 2 R 3 but    $ 1,\not{R},3 $    ,  [   $ \because ,|1-3|=2>1 $    ] 
$ \therefore  $     R is not transitive.
 BETA
  BETA 
             
             
           
           
           
          