Sets Relations And Functions Question 68

Question: If A= $ \{x|x^{3}-3x^{2}+2x=0\} $ ,B= $ \{x|x^{2}-2x=0\} $ , then B-A is

Options:

A) {2}

B) {0}

C) $ \phi $

D) {1}

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ A=\{x|x^{3}-3x^{2}+2x=0\} $
    Consider $ x^{3}-3x^{2}+2x=0 $
    $ \Rightarrow $ $ x(x^{2}-3x+2)=0 $
    $ \Rightarrow $ $ x(x-2)(x-1)=0 $
    $ \therefore $ $ A=\{0,1,2\} $ $ B=\{x|x^{2}-2x=0\} $ Consider $ x^{2}-2x=0 $
    $ \Rightarrow $ $ x(x-2)=0 $
    $ \therefore $ $ B=\{0,2\} $
    $ \therefore $ $ B-A=\{\}=\varphi $