Sets Relations And Functions Question 68
Question: If A= $ \{x|x^{3}-3x^{2}+2x=0\} $ ,B= $ \{x|x^{2}-2x=0\} $ , then B-A is
Options:
A) {2}
B) {0}
C) $ \phi $
D) {1}
Show Answer
Answer:
Correct Answer: C
Solution:
- [c]    $ A=\{x|x^{3}-3x^{2}+2x=0\} $ 
 Consider $ x^{3}-3x^{2}+2x=0 $
 $ \Rightarrow $ $ x(x^{2}-3x+2)=0 $
 $ \Rightarrow $ $ x(x-2)(x-1)=0 $
 $ \therefore $ $ A=\{0,1,2\} $ $ B=\{x|x^{2}-2x=0\} $ Consider $ x^{2}-2x=0 $
 $ \Rightarrow $ $ x(x-2)=0 $
 $ \therefore $ $ B=\{0,2\} $
 $ \therefore $ $ B-A=\{\}=\varphi $
 BETA
  BETA 
             
             
           
           
           
          