Sets Relations And Functions Question 90

Question: If $ | x^{2}-2x+2 |-| 2x^{2}-5x+2 | $ = $ | x^{2}-3x | $ , then the set of values of x is

Options:

A) $ ( -\infty ,0 ]\cup [ 3,\infty ) $

B) $ [ 0,\frac{1}{2} ]\cup [ 2,3 ] $

C) $ ( -\infty ,0 ]\cup [ \frac{1}{2},2 ]\cup [ 3,\infty ) $

D) $ [ 0,2 ]\cup [ 3,\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] we have,
    $ | 2x^{2}-5x+2 |+| x^{2}-3x |=| x^{2}-2x+2 | $ = $ | 2x^{2}-5x+2)-(x^{2}-3x) | $

$ \therefore (2x^{2}-5x+2)(x^{2}-3x)\le 0 $

$ \Rightarrow (2x-1)(x-2)x(x-3)\le 0 $ From the sign scheme, we have $ x\in [ 0,\frac{1}{2} ]\cup [2,3] $