Statistics And Probability Question 119

Question: A natural number x is chosen at random from the first 100 natural numbers. Then the probability, for the equation $ x+\frac{100}{x}>50 $ is

Options:

A) $ \frac{1}{20} $

B) $ \frac{11}{20} $

C) $ \frac{1}{3} $

D) $ \frac{3}{20} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given equation $ x+\frac{100}{x}>50 $

$ \Rightarrow x^{2}-50x+100>0\Rightarrow {{(x-25)}^{2}}>525 $

$ \Rightarrow x-25<-\sqrt{(525)} $ or $ x-25>\sqrt{(525)} $

$ \Rightarrow x<25-\sqrt{(525)} $ or $ x>25+\sqrt{(525)} $ As x is positive integer and $ \sqrt{(525)}=22.91, $ we must have $ x\le 2 $ or $ x\ge 48 $ Let E be the event for favourable cases and S be the sample space.

$ \therefore E={1,2,48,49,,…100} $

$ \therefore n(E)=55 $ and $ n(S)=100 $ Hence the required probability $ P(E)=\frac{n(E)}{n(S)}=\frac{55}{100}=\frac{11}{20} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें