Statistics And Probability Question 123

Question: $ x_1,x_2,x_3,…x_{50} $ are fifty real numbers such that $ x_{r}<{x_{r+1}} $ for $ r=1,2,3….49. $ Five numbers out of these are picked up at random. The probability that the numbers have $ x_{20} $ as the middle numbers, is

Options:

A) $ \frac{^{20}C_2{{\times }^{30}}C_2}{^{50}C_5} $

B) $ \frac{^{30}C_2{{\times }^{19}}C_2}{^{50}C_5} $

C) $ \frac{^{19}C_2{{\times }^{31}}C_2}{^{50}C_5} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ n(S){{=}^{50}}C_5,n(E){{=}^{30}}C_2{{\times }^{19}}C_2 $
    $ \therefore P(E)=\frac{^{30}C_2{{\times }^{19}}C_2}{^{50}C_5}. $