Statistics And Probability Question 130

Question: Let A, B, C be the events. If the probability of occurring exactly one event out of A and B is 1-a. out of B and C and A is 1-a and that of occurring three events simultaneously is $ a^{2} $ , then the probability that at least one out of A, B, C will occur is

Options:

A) ½

B) Greater than ½

C) Less than ½

D) $ Greaterthan{\scriptscriptstyle 3!/! _4} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] P(exactly one event of A and B occurs) $ =P[(A\cap B’)\cup (A’\cap B)] $ $ =P(A\cup B)-P(A\cap B) $ $ =P(A)+P(B)-2P(A\cap B) $

$ \therefore P(A)+P(B)-2P(A\cap B)=1-a $ ? (1) Similarly, $ P(B)+P(C)-2P(B\cap C)=1-2a $ ? (2) $ P(C)+P(A)-2P(C\cap A)=1-a $ ? (3) $ P(A\cap B\cap C)=a^{2} $ Now $ P(A\cup B\cup C) $ $ =P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C) $ $ -P(C\cap A)+P(A\cap B\cap C) $ $ =\frac{1}{2}[P(A)+P(B)-2P(B\cap C)+P(B)+P(C) $ $ -2P(B\cap C)+P(C)+P(A)-2P(C\cap A)] $ $ +P(A\cap B\cap C) $ $ =\frac{1}{2}[1-a+1-2a+1-a]+a^{2} $ [using (1), (2), (3) and (4)] $ =\frac{3}{2}-2a+a^{2}=\frac{1}{2}+{{(a-1)}^{2}}>\frac{1}{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें