Statistics And Probability Question 133

Question: If a and b are chosen randomly from the set consisting of numbers 1, 2, 3, 4, 5, 6, with replacement. Then the probability that $ \underset{x\to 0}{\mathop{\lim }},{{[(a^{x}+b^{x})/2]}^{2/x}}=6 $ is

Options:

A) 1/3

B) 1/4

C) 1/9

D) 2/9

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Given limit, $ \underset{x\to 0}{\mathop{\lim }},{{( \frac{a^{x}+b^{x}}{2} )}^{\frac{2}{x}}} $ $ \underset{x\to 0}{\mathop{\lim }},{{( 1+\frac{a^{x}+b^{x}-2}{2} )}^{\frac{2}{a^{x}+b^{x}-2}\underset{x\to 0}{\mathop{\lim }},( \frac{a^{x}-1+b^{x}-1}{x} )}} $ $ ={e^{\log ab}}=ab=6. $ Total number of possible ways in which a, b can take values is $ 6\times 6=36. $ Total possible ways are $ (1,6),(6,1),(2,3),(3,2). $ The total number of possible ways is 4. Hence, the required probability is $ 4/36=1/9. $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें