Statistics And Probability Question 139

Question: Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals.

Options:

A) $ \frac{1}{2} $

B) $ \frac{7}{15} $

C) $ \frac{2}{15} $

D) $ \frac{1}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Total number of ways of arranging the balls $ =\frac{10!}{3!7!}=120 $ Favourable cases, $ xB_1yB_2zB_3t $ If $ x,y,z $ and t be the number of white balls to be Place as shown above then $ 0\le x,t\le 5 $ $ 1\le y,z\le 6 $
    $ \therefore $ Number of favourable cases = coefficient of $ x^{7} $ in $ {{(1+x+x^{2}+…+x^{5})}^{2}}{{(x+x^{2}+…+x^{6})}^{2}} $ = coeff. of $ x^{7} $ in $ x^{2}{{(1+x+x^{2}+…+x^{5})}^{4}} $ = coeff. of $ x^{5} $ in $ {{( \frac{1-x^{6}}{1-x} )}^{4}}=coeff.ofx^{5}in $ $ {{(1-x)}^{-4}} $ $ {{=}^{8}}C_5=56 $
    $ \therefore $ Desired probability $ =\frac{56}{120}=\frac{7}{15} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें