Statistics And Probability Question 212

Question: If $ {{\bar{x}}_1} $ and $ {{\bar{x}}_2} $ are the means of two distributions such that $ {{\bar{x}}_1}<{{\bar{x}}_2} $ and $ \bar{x} $ is the mean of the combined distribution, then

Options:

A) $ \bar{x}<{{\bar{x}}_1} $

B) $ \bar{x}>{{\bar{x}}_2} $

C) $ \bar{X}=\frac{{{{\bar{X}}}_1}+{{{\bar{X}}}_2}}{2} $

D) $ {{\bar{x}}_1}<\bar{x}<{{\bar{x}}_2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ n_1 $ and $ n_2 $ be the number of observations in two groups having means $ {{\bar{x}}_1} $ and $ {{\bar{x}}_2} $ respectively. Then, $ \bar{x}=\frac{n_1{{{\bar{x}}}_1}+n_2{{{\bar{x}}}_2}}{n_1+n_2} $ Now, $ \bar{x}-{{\bar{x}}_1}=\frac{n_1{{{\bar{x}}}_1}+n_2{{{\bar{x}}}_2}}{n_1+n_2}-{{\bar{x}}_1} $ $ =\frac{n_2({{{\bar{x}}}_2}-{{{\bar{x}}}_1})}{n_1+n_2}>0,,[\because {{\bar{x}}_2}>{{\bar{x}}_1}] $
Þ $ \bar{x},>,{{\bar{x}}_1} $ …..(i) and $ \bar{x}-{{\bar{x}}_2}=\frac{n({{{\bar{x}}}_1}-{{{\bar{x}}}_2})}{n_1+n_2}<0 $ , $ [ \because {{{\bar{x}}}_2}>,{{{\bar{x}}}_1} ] $
Þ $ \bar{x}<,{{\bar{x}}_2} $ ……(ii) From (i) and (ii), $ {{\bar{x}}_1}<\bar{x},<{{\bar{x}}_2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें