Statistics And Probability Question 236

Question: If m rupee coins and n ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is

Options:

A) $ ^{m+n}C_{m}/n^{m} $

B) $ \frac{n,(n-1)}{(m+n),(m+n-1)} $

C) $ ^{m+n}P_{m}/m^{n} $

D) $ ^{m+n}P_{n}/n^{m} $

Show Answer

Answer:

Correct Answer: B

Solution:

  •                  $ m $  rupee coins and  $ n $  ten paise coins can be placed in a line in  $ \frac{(m+n)!}{m!n!} $  ways.                    If the extreme coins are ten paise coins, then the remaining  $ n-2 $  ten paise coins and  $ m $  one rupee coins can be  arragned in a line in  $ \frac{(m+n-2)!}{m!(n-2)!} $  ways.                    Hence the required probability                                                                                                              $ =\frac{\frac{(m+n-2)!}{m!(n-2)!}}{\frac{(m+n)!}{m!n!}}=\frac{n(n-1)}{(m+n)(m+n-1)} $ .