Statistics And Probability Question 248
Question: Six boys and six girls sit in a row randomly. The probability that the six girls sit together
Options:
A) $ \frac{1}{77} $
B) $ \frac{1}{132} $
C) $ \frac{1}{231} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
-
6 boys and 6 girls can be arranged in a row in $ 12! $ ways. If all the 6 girls are together, then the number of arrangement are $ 7!\,\times \,6! $ . Hence required probability $ =\frac{7!\,.\,6!}{12!} $ $ =\frac{6\times 5\times 4\times 3\times 2}{12\times 11\times 10\times 9\times 8}=\frac{1}{132} $ .