Statistics And Probability Question 263

Question: Let $ 0<P(A)<1 $ , $ 0<P(B)<1 $ and $ P(A\cup B)= $ $ P(A)+P(B)-P(A),P(B). $ Then

[IIT 1995]

Options:

A) $ P(B/A)=P(B)-P(A) $

B) $ P(A^{c}\cup B^{c})=P(A^{c})+P(B^{c}) $

C) $ P{{(A\cup B)}^{c}}=P(A^{c}),P(B^{c}) $

D) $ P(A/B)=P(A) $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Since $ P(A\cap B)=P(A),P(B) $ It means $ A $ and $ B $ are independent events so $ A^{c} $ and $ B^{c} $ will also be independent. Hence $ P{{(A\cup B)}^{c}}=P(A^{c}\cap B^{c})=P(A^{c}),P(B^{c}) $ (Demorgan?s law) As $ A $ is independent of $ B, $ hence $ P(A/B)=P(A) $ , $ {\because ,P(A\cap B)=P(B)P(A/B)} $ .