Statistics And Probability Question 347

Question: For 10 observations on price (x) and supply (y), the following data was obtained: $ \sum{x=130,\sum{y=220,}} $ $ \sum{x^{2}=2288,\sum{y^{2}=5506}} $ and $ \sum{xy=3467} $ What is line of regression of y on x?

Options:

A) $ y=0.91x+8.74 $

B) $ y=1.02x+8.74 $

C) $ y=1.02x-7.02 $

D) $ y=0.91x-7.02 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Line of regression of y on x is: $ y-\bar{y}=b_{yx}(x-\bar{x}) $ $ \bar{y}=\frac{\Sigma y}{n};\bar{x}\frac{\Sigma x}{n}\Rightarrow \bar{y}=\frac{220}{10}=22;\bar{x}=\frac{130}{10}=13 $ $ b_{yx}=r.\frac{{\sigma_{y}}}{{\sigma_{x}}} $ $ r=\frac{n\Sigma xy-(\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^{2}-{{(\Sigma x)}^{2}}][n\Sigma y^{2}-{{(\Sigma y)}^{2}}]}} $ $ =\frac{10(3467)-(130)(220)}{\sqrt{[(10\times 2288)-130^{2}][(10\times 5506)-(220^{2})]}} $ $ {\sigma_{y}}=\sqrt{\frac{\Sigma y^{2}}{n}-{{( \frac{\Sigma y}{n} )}^{2}}}\Rightarrow {\sigma_{y}}=8.2;{\sigma_{x}}=7.73. $

$ \Rightarrow b_{xy}=0.962\times \frac{8.2}{7.73}=1.02 $

$ \Rightarrow $ Line of regression of y on x is; $ y-22=1.02(x-13) $

$ \Rightarrow y=1.02x+8.74 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें