Statistics And Probability Question 372

Question: If $ \bar{E} $ and $ \bar{F} $ are the complementary events of events E and F respectively and if $ 0<P,(F)<1, $ then

[IIT 1998]

Options:

A) $ P,(E/F)+P,(\bar{E}/F)=1 $

B) $ P,(E/F)+P,(E/\bar{F})=1 $

C) $ P,(\bar{E}/F)+P,(E/\bar{F})=1 $

D) $ P,(E/\bar{F})+P,(\bar{E}/\bar{F})=1 $

Show Answer

Answer:

Correct Answer: A

Solution:

  •          $ P(E/F)+P(\bar{E}/F)=\frac{P(E\cap F)+P(\bar{E}\cap F)}{P(F)} $              $ =\frac{P\{(E\cap F)\cup (\bar{E}\cap F)\}}{P(F)} $                                   $ [\because \ E\cap F $  and  $ \bar{E}\cap F $ are disjoint]             $ =\frac{P\{(E\cup \bar{E})\cap F\}}{P(F)}=\frac{P(F)}{P(F)}=1 $             Similarly we can show that  and  are not true while  is true.                  $ P( \frac{E}{{\bar{F}}} )+P( \frac{{\bar{E}}}{{\bar{F}}} )=\frac{P(E\cap \bar{F})}{P(F)}+\frac{P(\bar{E}\cap \bar{F})}{P(F)}=\frac{P(\bar{F})}{P(\bar{F})}=1 $